The regularity number of a finite group

Marina Anagnostopoulou-Merkouri

Joint work with Tim Burness

Heilbronn HDP event

Killing symmetries

Bases of permutation groups

 Ω - finite set, $G \leq \text{Sym}(\Omega)$ transitive, $\alpha \in \Omega$.

The **stabiliser** of α in G is

$$H = G_{\alpha} = \{ g \in G : \alpha^g = \alpha \}$$

A base for G is a subset $\mathcal{B} \subseteq \Omega$ such that $\bigcap_{\beta \in \mathcal{B}} G_{\beta} = 1$.

The **base size** of *G*, denoted by $b(G, \Omega)$ is the smallest cardinality of a base for *G*.

Remark: $b(G, \Omega)$ is the smallest k for which there exist $g_1, \ldots, g_k \in G$ such that $\bigcap_{i=1}^k H^{g_i} = 1$.

Regular tuples

$$H \leq G$$
 is **core-free** if $\bigcap_{g \in G} H^g = 1$.

A tuple $\tau = (H_1, \ldots, H_k)$ of core-free subgroups of G is **regular** if there exist $g_1, \ldots, g_k \in G$ such that

$$\bigcap_{i=1}^{\kappa} H_i^{g_i} = 1$$

Remark: $b(G, \Omega) \leq k \iff (\underbrace{H, \ldots, H}_{k})$ is regular.

What is the smallest k s.t. all c.f. k-tuples are regular?

The regularity number

The **regularity number** of G, denoted by R(G), is the smallest k s.t. all core-free k-tuples of G are regular.

If $S = \{H \leq G : H \text{ core-free}\}$ and $\mathcal{P} \subseteq S$, then we define:

 $R_{\mathcal{P}}(G) = \min\{k : \text{ every tuple in } \mathcal{P}^k \text{ is regular}\}$

The almost simple groups

If G is a finite simple group, then it belongs in one of the following classes:

- C_p (p prime)
- A_n ($n \ge 5$)
- Lie type (Classical or Exceptional)
- 26 sporadic simple groups

G is **almost simple** if there exists a nonabelian simple group *T* such that $T \leq G \leq Aut(T)$.

T is the **socle** of G.

Standard subgroups

 $G \leq \text{Sym}(\Omega)$ is **primitive** if it is transitive and its stabilisers are maximal subgroups.

- *G* almost simple:
 - \circ Standard actions $\leftrightarrow \rightarrow$ large bases
 - \circ Non-standard actions $\leftrightarrow \rightarrow$ small bases

Cameron's base size conjecture

Cameron's base size conjecture

If $G \leq \text{Sym}(\Omega)$ is almost simple primitive with point stabiliser *H* and *H* is non-standard, then $b(G, \Omega) \leq 7$.

Burness et al. : Cameron's conjecture is true.

Generalised Cameron's conjecture

If G is almost simple, then $R_{ns}(G) \leq 7$.

Results

Theorem A (A-M & Burness | 2024+)

Let G be almost simple with socle A_n . Then

• If
$$G \in \{S_n, A_n\}$$
, then $R(G) = n - |S_n : G|$

•
$$R_{ns}(G) \leq 6$$
, with $R_{ns}(G) = 2$ if $n \geq 13$

Theorem B (A-M & Burness | 2024+)

If G is almost simple with sporadic socle, then $R(G) \leq 7$.

Theorem C (A-M | 2024+)

Let G be almost simple with classical socle and natural module V.

- If G is symplectic, then $R_{ns}(G) \leqslant 4$
- ∘ If $G \in {$ **L, U, O** $}$ and dimV ≥ 11, then $R_{ns}(G) \leq 4$

Methods: probabilistic, computational, combinatorial.

Other problems: $R_{sol}(G)$, $R_{sol max}(G)$, R(G) for classical groups, algebraic groups.